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We present a matrix-free discontinuous Galerkin method for simulating compress-
ible viscous flows in two- and three-dimensional moving domains. To this end, we
solve the Navier—Stokes equations in an arbitrary Lagrangian Eulerian (ALE) frame-
work. Spatial discretization is based on standard structured and unstructured grids but
using an orthogonal hierarchical spectral basis. The method is third-order accurate in
time and converges exponentially fast in space for smooth solutions. A novelty of the
method is the use of a force-directed algorithm from graph theory that requires no ma-
trix inversion to efficiently update the grid while minimizing distortions. We present
several simulations using the new method, including validation with published re-
sults from a pitching airfoil, and new results for flow past a three-dimensional wing
subject to large flapping insect-like motiong 1999 Academic Press

1. INTRODUCTION

Despite great research efforts in designing good unstructured grids for aerodyn:
flows, especially for three-dimensional simulations, most finite element and finite volu
solutions depend strongly on the quality of the grid. For highly distorted grids converge
is questionable, and in most cases convergence rates are typically less than second
Moreover, efforts to increase the accuracy of finite volume methods to higher than sec
order have not been very successfuktasaservativityin the formulation omonotonicity
of the solution has to be compromised. These difficulties are particularly pronouncec
simulations in moving computational domains involving aeroelastic motion and other flc
structure interaction problems [1, 2].

In the current work we develop algorithms for tbempressibldNavier—Stokes in mov-
ing domains employing high-order specthglelement discretizations. Unlike our previous
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work for incompressible flows [3] or the mixed formulation approach for two-dimensior
compressible flows in [4], here we uselizcontinuous Galerkiapproach that allows the
use of arorthogonalpolynomial basis of different order in each element. In particular, w
develop a discontinuous Galerkin formulation famththe advective as well as the diffusive
components of the Navier—Stokes equations. This allows multi-domain representation
a discontinuous (i.e., globally?) trial basis. This discontinuous basis is orthogonal, hie
archical, and maintains a tensor-product property even for non-separable domains [!
Moreover, in the proposed method tbenservativityproperty is maintained automatically
in the element-wise sense by the discontinuous Galerkin formulation, mioitetonicity
is controlled by varying the order of the spectral expansion and by perfotmiafjnement
around discontinuities.

The work presented here was motivated by the work of Cockburn and Shu on discon
ous finite elements for hyperbolic problems presented in a series of papers (see [7-12]
implementation of these ideas for hyperbolic systems using quadrilateral Legendre spe
elements was developed in [13]. Theoretical work on discontinuous Galerkin method:
diffusion is more recent [7] and has provided a justification of the application of the disc
tinuous Galerkin method to compressible Navier—Stokes equations done earlier in [14,
Adifferentapproach has beenindependently developed by Oden and collaboratorhjfort
version of finite elements (see [16—20]). Discontinuous Galerkin methods use concepts
from finite volume and finite element methodology. In the current paper, we aldugitd
order accuracysing spectrafip expansions on standard unstructured and structured gri

We have followed the arbitrary Lagrangian Eulerian (ALE) framework as in previo
works, e.g., [21-27], but with an important difference on computing the grid veloci
Specifically, we developed a modified version of the force-directed method [28] to comj
the grid velocity via incomplete iteration. We then update the location of the vertices
the elements using the known grid velocity. In addition to the ALE treatment, the propo
method is new both in the formulation (e.g., construction of inviscid and viscous fluxes,
of characteristic variables, no need for limiters) as well as in the discretization as it
polymorphicsubdomains. We will demonstrate this flexibility in the context of simulatin
viscous flows that require accurate boundary layer resolution.

The paper is organized as follows: We first present the ALE discontinuous Gale
formulation for advection and diffusion scalar equations separately for clarity, and <
sequently we discuss the algorithm for the grid velocity as well as other implementa
issues. We then present convergence results (in time and in space), a 3D simulatio
ing hybrid discretization, and two simulations in moving computational domains. In
Appendixes, we briefly review the spectral basis we use in conjunction with the pc
morphic subdomains in two and three dimensions and provide details of the nume
quadrature used.

2. NUMERICAL FORMULATION

We consider the non-dimensional compressible Navier—Stokes equations, which we:
in compact form in an Eulerian reference frame as

U+V - F=RelV.-F inQ, (1)
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whereF andF" correspond to inviscid and viscous flux contributions, respectively, a
Re, is the reference Reynolds number. Here the vdatef[p, pUy, pUs, pUs, p€]t with

u = (uy, Uy, u3z) the local fluid velocity the fluid density, ané the total energy. Splitting
the Navier—Stokes operator in this form allows for a separate treatment of the inviscid
viscous contributions, which, in general, exhibit different mathematical properties.

In the following, we will solve the Navier—Stokes equations in a time-dependent dom
Q(t) by discretizing on a grid whose points may be moving with velotify which is,
in generaldifferentthan the local fluid velocity. This is the so-called arbitrary Lagrangia
Eulerian (or ALE) formulation which reduces to the familiar Eulerian and Lagrangi
forms by settingJ? =0 andU? = u, respectively [21-26]. In this context, we will review
the discontinuous Galerkin formulation employed in the proposed method.

As regards the spatial representation, we will use a discretization similar to finite elem
but with an orthogonal spectral basis consisting of Jacobi polynomials (see Appendix
also [29]). Arigorous analysis of the discrete advection operator was presented in [4]. Ir
proposed formulation, no flux limiters are used butinstead we reduce the order of polyno
around discontinuities and perfotmrefinement with zero-order elements. Also, Cockbur
and Shu [7] did not use any limiters for the convection-diffusion system in their versior
the discontinuous Galerkin method with lower order elements. This is justified in part
theoretical work on scalar nonlinear equations in [30] that shows stability IngHmerm and
convergence of the method to the entropy solution, assuming a strictly convex or con
nonlinearity. This result holds for any value of degree of approximating polynomials. Sim
results were proved by Johnson and co-workers in earlier work [31, 32] but for nonlin
conservation laws containing an additional term that is responsible for shock-capturing
this stage, no stability theory exists for a system of nonlinear conservation laws.

In the following, we discuss separately the formulation for the advection and diffus
terms, and subsequently we present a heuristic algorithm to update the grid vé&l8city,

2.1. Discontinuous Galerkin for Advection

Using the Reynolds transport theorem we can write the Euler equations in the /
framework following the formulation proposed in [26] as

ljt + Gi,i = —Uf’ifl, (2)
where the ALE flux term is defined as
Gi = (ui —U®)U + p[0, 831, 82, 83, uil, =123
We can recover thEuler fluxF (see Eq. (1)) by simply setting? =0, and in general we
have thaiG; = F — UigU. Now if we write the ALE Euler equations in terms of teeler
fluxthen the source term on the right-hand-side of Eq. (2) is eliminated and we obtain
Ui+ Fi —U%0; =0, ©)

which can then be recast in the standard quasi-linear form

Ui+ [A -U8I]U,; =0,
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whereA; =aF; /0U (i =1, 2, 3) is the flux Jacobian anldis the unit matrix. In this formitis
straightforward to obtain the corresponding characteristic variables since the ALE Jacc
matrix can be written

AME=[A -V =R-[A -U%] L,

where brackets denote matrices. Here the diagonal matgentains the eigenvalues of
the original Euler Jacobian matrii, andR andL are the right- and left-eigenvector ma-
trices, respectively, containing the corresponding eigenvectoks lbtice that the shifted
eigenvalues of the ALE Jacobian matrix do not change the corresponding eigenvectc
this characteristic decomposition.

To explain the discontinuous Galerkin ALE formulation we consider the two-dimensio
equation for advection of a conserved scajam a region{2 (t)

2;—?+V-F(q)—ug-Vq=0.

In the discontinuous Galerkin framework, we test the equation above with discontint
test functionsy separately on each elemesj (see also [4, 17]) to obtain

(v, dPe+ (v, V-F(@))e — (v, U9 - VQ)e
+/ v[f(Gi. ge) — F(@) — (Qup— G) - U%] - Ads=0. 4)
aTe
Here (, -) denotes inner product evaluated over each elementf &@wanumerical boundary

flux [4]; the notation is explained in Fig. 1. Notice that this form is different than the for
used in the work of [25, 33] where the time derivative is applied to the inner prodt

FIG. 1. Notation for a triangular element. The subscript (i) denotes interior quantities and (e) exterior gt
tities. Also,U¢ is the grid velocity.
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(v, Pe+ (v, V- F(@)e — (v, U%- VO)e — (v, qV - U9)e

+/ v[f(G, de) — F(@) — (Qup— ) - V%] - Ads=0. (5)
9Te
Note that from the Reynolds transport theorem we have that

3 qu:/ (q +qV - U%) de,
Q(t) Q)

where the partial time derivative on the right-hand side is with respect to the moving A
grid. The difference between the forms in Egs. (4) and (5) is that the different treatmer
the time derivative introduces a term in the second case (Eqg. (5)) that involves the diverg
of the grid velocity. While the two forms are equivalent in the continuous case, they
not necessarily equivalent in the discrete case as we will discuss further in Section 3 i
context of a geometric conservation law [34].

To compute the boundary terms, we follow an upwind treatment basetiaracteris-
tics similar to the work in [4], including here the term representing the grid motion.
this end, we need to linearize the ALE Jacobimmal to the surfacd.e., [A—UZ1] =
R[A —UZI]IL, whereUJ is the velocity of the grid in the direction. The termd,, — ;)
expresses a jump in the variable at inflow edges of the element resulting from an up
treatment. In the case of a system of conservation laws the numerical fRigomputed
from an approximate Riemann solver [4].

In this formulation, the space of test functions may contain formally discontinuous fu
tions, and thus the corresponding discrete space contains polynomials within each “elen
but zero outside the element. Here the “element” is, for example, an individual triangula
gionT; in the computational mesh applied to the problem. Thus, the computational don
Q= U; T, andT;, T; overlap only on edges.

2.2. Discontinuous Galerkin for Diffusion

The viscous contributions do not depend on the grid velddityand therefore we can
apply the following discontinuous Galerkin formulation. Let us consider as a model probl
the parabolic equation with variable coefficianik) to demonstrate the treatment of the
viscous contributions:

U =V-@wvu) + f, inQ, ue L)
u=g(,t), onos2.

We then introduce the flux variable
q=-—-vVu (6)
with q(x, t) € L%(R), and re-write the parabolic equation

u=-vV-q+ f, inQ
1/vqg = —Vu, inQ
u=g(x,t, onos2.
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The weak formulation of the problem is then as follo®ad (g, u) € L?(2) x L%(Q)
such that

(Ut, w)e = (4, Vw)e — (w, b - N)e + (f, w)e, Vw € LA(RQ)
1/v(Q,V)e = (U, V - V) — (Up, V- N)e, WV € L2()
u=gx,t), onos2,

where the parentheses denote standard inner product in an elenes jefore and the
angle brackets denote boundary terms on each elementnwi#moting the outward fac-
ing unit normal. The boundary terms contain weighted boundary valuag, gf which
can be chosen as the arithmetic mean of values from the two sides of the boundary
up = 0.5(u; + Ue), andg, = 0.5(qi + ge) [35, 14] where the subscript)(denotes contribu-
tions evaluated at the interior side of the element boundary,@rah(the exterior side of
the element boundary (see Fig. 1).

Upon integrating by parts once more, we obtain an equivalent formulation which is ea
to implement, and hence is used in the computer code. The new variational problem i

(U, we = (=V -, w)e — (w, (G — Gi) - Ne + (f,w)e,  Yw € LAQ)
1/v(g, V)e = (—=VU,V)e — (U — Uj,V-N)g, Vv e L3Q)
u=g(x,t), in0Q2.

This method is element-wise conservative, a property which is particularly difficult to p
serve in high-order finite elements. A similar conservative discontinuous Galerkin met
for diffusion problems but usingsinglevariational statement, i.e., without the introductior
of the auxiliary flux variable (Eq. (6)), has been developed by Qstead. [18] (see also
[19, 20]). We refer the interested reader to these works and to [18] in particular for a tt
retical treatment of the diffusion problem, including a more rigorous definition of discr
spaces (the so-called broken Sobolev spaces) as well as derivaipriarfi error estimates.

2.3. Grid Velocity Algorithm

The grid velocity is arbitrary in the ALE formulation and therefore great latitude exists
the choice of technique for updating it. Mesh constraints such as smoothness, consis
and lack of edge crossover, combined with computational constraints such as memor
and efficiency dictate the update algorithm used. Two broad classifications of algorithm:
ist for updating the mesh: Velocity smoothing methods and coordinate smoothing meth

Typically, in velocity smoothingnethods the grid velocity? is updated by solving

V- (k(X)VU9) =0,

with Dirichlet conditions folU® on both the moving wall boundary and on the outer boun
ary of the computational domain. The choike- 1 leads to the classic elliptic velocity
smoothing which produces the most uniform deformation of the elements. Since inr
computational fluid applications Poisson solvers are necessary, the choice of a Lapl:
velocity smoother is natural due to its straightforward implementation. Though this met
produces the most uniform deformation of elements, even small body motions can le:
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FIG.2. The Laplacian velocity smoothing (left) leads to cross edging unlike the modified barycenter met
(right) introduced here. The turn of the airfoil is about 8 degrees, while the original grid configuration is ident
in both cases. (Only the trailing edge of the airfoil is shown.)

edge crossoveas demonstrated in Fig. 2. Specifically, we consider the pitching airfoil (s
example in Subsection 4.2) and starting from the same original unstructured grid we
after 8 degrees of rotation how the grid is deformed. We see in Fig. 2 (left) that using
standard Laplacian smoothing leads to edge crossing which will render the computz
unstable.

Modifications to this approach were presented in [27] where a variable diffushity (
being a function of position within the mesh) was introduced to help avoid edge cross
Contrastingly, other researchers have attempted to calculate the mesh deformation
coordinate smoothing methods [36—38]. Mesh positions are obtained using methods |
on a graph theory analogy to the spring problem. Verticies are treatextlas while edges
are treated aspringsof varying length and tension. At each time step, the mesh coordin
positions are updated by equilibration of the spring network. Once the new vertex posit
are calculated, the mesh velocity is obtained through differences between the origina
equilibrated mesh vertex positions.

In the current work, for updating the grid velocity we combined the two concepts m
tioned above by formulating the problem of solving for the mesh velocity in terms of
graph theory equivalent problem. Specifically, we incorporate the idea of variable diffusi
as in [27] while maintaining the computational efficiency of the methods used in [36-2
The combination of these two methodologies provides a computationally efficient way
minimizing edge crossover in situations where Laplacian smoothing fails (as demonstr
in Fig. 2, right).

The method we use for updating the mesh velocity is a variation of the barycel
method [28] and relies on graph theory. Given the graph(®, E) of element vertices V
and connecting edges E, we define a partitioa Vo U V; U V, of V such thatV, contains
all vertices affixed to the moving boundaky, contains all vertices on the outer boundan
of the computational domain, and contains all remaining interior vertices. To create
the effect of variable diffusivity, we use ttencept of layersAs is pointed in [27], it is
desirable for the vertices very close to the moving boundary to have a grid velocity aln
equivalent to that of the boundary. Hence, locally the mesh appears to move with ¢
movement, whereas far away from the moving boundary the velocity must gradually
to zero. To accomplish this in our formulation, we use the concept of local tension wit
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FIG. 3. Graph showing vertices with associated velocities and edges with associated weights.

layers to allow us to prescribe the rigidity of our system. Each vertex is assigned |
layer value which heuristically denotes its distance from the moving boundary. Weic
are chosen such that vertices closer to the moving boundary have a higher influence c
updated velocity value. To find the updated grid veloci®y at a vertex € V,, we use a
force-directed method. Given a configuration as in Fig. 3, the grid velocity at the cel
vertex is given by

degv) degv)

W=> au. > o=1
i=1 i=1

where degy) is the number of edges meeting at the vertex vanig thelth layer weight
associated with thigh edge. This is subjected to the following constrain®s:= 0 (Vv € V;)
andu®(Vv € Vp) is prescribed to be the wall velocity. This procedure is repeated for a f
cycles following anincompleteiteration algorithm, over alb € V,. (Here by incomplete
we mean that only a few sweeps are performed and not full convergence is sought.)
the grid velocity is known at every vertex, the updated vertex positions are determined L
explicit time-integration of the newly found grid velocities.

To demonstrate the flexibility provided by havingriable stiffnesén the proposed grid
velocity algorithm, we plot in Fig. 4 the grid after the airfoil shown in Fig. 2 is rotate
by about 8 degrees. We have changed the discretization to a hybrid one by empic
quadrilateral elements around the airfoil and triangular elements in the outer layers
flow results in Subsection 4.2). On the left of Fig. 4 we plot the grid obtained with t
uniform stiffness for all elements. On the right, we plot again the grid but with the inr
layers biased to have stiffness 20 times higher than the outer layers. We see that the dist
of the quadrilaterals is clearly smaller in the latter case.

3. IMPLEMENTATION ISSUES

We present here some details on the implementation of the method in the conte:
spectralipelement methods (see also Appendixes | and Il). First, we summarize the ove
algorithm:
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04
L]

FIG. 4. Hybrid discretization. The “stiffer” grid on the right is less distorted around the airfoil than the ol
on the left. The turn of the airfoil is about 8 degrees, while the original grid configuration is identical in b
cases.

DISCONTINUOUSGALERKIN ALGORITHM.

e Step 0. Read the initial conditions for the state vetibrand project all fields to
polynomial space.
e Stepn. Begin time loop.
e Compute the Navier—Stokes operaitt (see below).
e Advance in timeU"1=U0" + AtUT. Timet™! = (n + 1)At.
e Overwrite the wall boundary valueg:**1=U,,
e If (n+ 1)At less than specified time continue Else exit.
e Print output and store the results in polynomial space.

Next we present the algorithm we employ to compute the Navier—Stokes opBfator
and impose the boundary conditions using characteristic treatment.

NAVIER—STOKES OPERATOR

e Compute the convection contributiod cony.
e Compute characteristic boundary valuesi, .

« Compute divergence of the interior Euler flutf", .

o U f,conv= U?,nconplP,tcon\r

Save the values at the outer boundarig; .

Compute the viscous contributionss yisc.

Uf =U f,conv+ U f,visc-

Overwrite the outer boundary valudg"=U%"

All operations in the above procedure are performed on the quadrature points (in “pt
cal” space). However, as the initial conditions are in polynomial space, these operatior
not take the functiot out of the polynomial space. The only operation that can do that
the overwriting of the boundary values (this is done by setting the functional values at
quadrature points on the boundary). In this case, we should perform the projection o
field back to polynomial space. This is done locally, only in the elements which are nex
the boundary. This point is explained further in Subsection 3.2.



A DISCONTINUOUS GALERKIN ALE METHOD 137

/ pat-to--~boinig~ .

g+l Gauss points

FIG.5. Quadrature points used in a triangular element gith7. This quadrature is exact for standard inner
products in the space of polynomials upgte= 7. The top corner is the singular corner as described in Appendix

3.1. Quadrature Rules

Of particular importance for accuracy and computational efficiency is the evaluat
of the integrals involved in the discontinuous Galerkin formulation, i.e., the numeri
quadrature used. Because of the special basis we use here, we empl@danumerical
quadraturebased on Gauss, Gauss—Lobatto, and Gauss—Radau integration. To illustra
main points in two-dimensions, we consider a triangular element as shown in Fig. 5. The
vertex is the singular corner as defined in Appendix | and no quadrature point is assif
toit.

Consider a space of polynomials of degree up tsed in an elemeng). Then wedefine
the quadrature order= p (with p denoting also the spectral order). With this definition
we mean that we have ¢ 2) Gauss—Lobatto points in the direction across the singul
corner and@ + 1) Gauss—Radau points in the other direction (see Fig. 5). In this case,
quadrature rule is exact for polynomials of degregir2 the interior of the elements (in
non-curvilinear geometries).

All the boundary terms, i.e., boundary integrals and boundary fluxes, are compute
the interpolation of the interior values tq 4 1) Gauss points on each edge. This is ho
we match the points of boundary flux computations between the adjacent elements. |
orders in the elements are different, then n@ximunnumber of edge quadrature points
should be taken for stability. The edge fluxes need to be projected to the smaller polync
space (between the two adjacent elements) in order to preserve conservativity. We als
that on the edges the quadrature is exact for polynomials of deggee 12 These are
conditions necessary to guarantee the maximum possible accurgey-df)(as proven in
[11] for the linear case.

3.2. Boundary Conditions

Let us consider in more detail how we handle the boundary conditions for the Navi
Stokes operator. First, we compute the convection contribltiog,,. On the outer bound-
aries the interior valuedX) of the conservative variableg (puz, pus, p3, p€) are taken
from the previous time stefJ("). The specified referencex” values are taken as the
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exterior values{¢). The characteristic boundary Contributimﬂon\, is computed by an
approximate Riemann solver and is stored. At the walls, the interior values are take
before, and the exterior values are found as follgws: p;, Ve =0, To=T,, for the case of
no-slip, isothermal wall.

We use the stored boundary values for the outer boundaries and wall boundary condi
as Dirichletboundary conditions for the viscous step. In this algorithm, they are implemet
in the following way: when the viscous contributid visc is computed, we add up the
two contributionsU ¢ cony and U ¢ yise, @and we assign thUtf’f‘conV for the boundary values.
Then, after we advance in time, we overwrite the wall boundary valﬂlg,@: —U w. Here,
overwriting the boundary conditions implies changing the values at the quadrature pc
on the boundary; subsequently we project the function in this element back to polynol
space.

3.3. Computation of Derivatives

All the derivatives are computed in a weak discontinuous Galerkin sense as follows:
u e L%(Q) thenq e L?(Q) is x-derivative ofu, q = uy, if

(@, w)e = (Ux, we + (w, (Up — U)Ny)e  Yw € LZ(Q),

whereup = %(ui + Ue). The derivatives are computed in element-wise sense anl (
denotes standard inner productin an elemenfhe angle brackets denote the inner produ
over elemental boundary, witty being thex component of the outwards unit normal. All the
operations are performed in “physical” spasgis computed on the quadrature points, an
all integrals are computed using the aforementioned quadrature rules. In our computa
we use the same spaces for the functions and their derivatives. These spaces con
functions which are polynomials of degree upgtinside the elements, and the quadratur
rules used are exact in this case.

In order to demonstrate how we preserve tliagonal massmatrix even for non-
curvilinear geometries, we consider a two-dimensional scalar equation for advectio
a conserved quantity in a curved element which we denote &gf areaT and boundary
oT,
8—u+V-F(u)=0. (7)
ot
The element jacobiad (x, y) is variable inside the element, and we used it to multipl
Eq. (7) by amodifiedtest functionﬁ. Then integrating by parts, we obtain

aJu v v ~ v
\/TaitJ(X,y) dX+AT J(X,y)nf(U)dS_/l—vJ(X’y) F(U)dX:O (8)

We integrate by parts once more, this time taking the flux of the interior v&l(gsin the
boundary integral, and arrive at the formulation

au v v - v
Jat 5 @ Ly s - For-ndst [ s vrudx o

wheref is the numerical flux as before. If we define the inner product in this elemasit
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U, ve= [7 355 5 dx, we can rewrite Eq. (9) in the form

)
a(u,v)e+/ X, y)(f(ul,ue) F(u))-nds+ (V-F(u),v)e=0. (10)

With this rearrangement and given that we employ an explicit time-stepping algorithm,
preserve the diagonality of the mass matrix even for curved elements, although “quadr.
crimes” are introduced. The main source of these errors is due todt#iedtest function,
which is not in polynomial space anymore, and also due to the collocation-type evalue
of the boundary integral in Eq. (10). However, extensive numerical tests with curvilin
2D and 3D geometries have shown that this quadrature error is bounded and that ind.
does not affect exponential convergence [39].

3.4. Geometric Conservation Law

The procedure in Section 3 describes a first-order time accurate algorithm as first-c
explicit integration is employed. However, as we will show in the next section second-
third-order schemes can easily be constructed using explicit multi-step time-integra
It is interesting to note that thdiscrete geometric conservation lal@GCL) [33, 34]
is automatically satisfied in the ALE formulation implemented here (see Eqg. (4)) si
the term associated with thgrid-velocity divergences eliminated, unlike the form of
Eq. (5). Therefore, the geometric conservation law does not pose any constraints, anc
the temporal accuracy of the scheme is determined solely by the time-integration
employed. If Eq. (5) is employed instead to obtain the discrete system, then new ti
stepping algorithms need to be constructed as in the work of [33] that honor the DC
constraint in order to guarantee high-order time accuracy.

3.5. Stability Issues and Over-integration

As regardspatial discretizatiomve employ a finite element mesh with an orthogonal (fc
non-curvilinear edges) spectral basis (see Appendix I) that leads to a diagonal mass n
and thus no matrix inversions are necessary. It has been reported, however (F. Bas:
S. Rebay, personal communications) that isoparametric representation of geometry
lead to a weak instability. Although we could not exactly confirm that observation in c
numerical experiments even with very low-order discretizations similar to the ones L
in [14], we have found thabver-integrationin computing inner products in the weak
formulation is important in obtaining asymptotically stable results, i.e., after long-tir
integration.

In particular, we use Gauss—Jacobi quadrature, which is exact for standard inner pro
in non-curvilinear geometries if the quadrature orgés equal to the order of the spectral
basisp (see Subsection 3.1, Appendix Il, and also [29]). In Fig. 6 we show simulations
compressible viscous flow at Reynolds number (based on the chord-I&&gtH),000 past
a NACAO0012 airfoil for the case qf = q = 3 on the left, ang = 3 andq = 4 on the left. We
see that the results in both cases are visually indistinguishable although there is some
quantitative difference. This is documented in Fig. 7 which shows the corresponding hi
ries of the modal advection contributions from the boundary and the interior of the elen
computed at a point close to the leading edge of the airfoil. If we now increase the Reyn
number toRe= 10,000 and compare the simulations in the two cases we see signifi
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FIG.6. Density contoursfoRe=1,000andV =0.2. The simulation on the leftwas performed with=-q =3
and on the right wittp = 3; g = 4. (Note thatp is the order of trial basis per element anis the quadrature order.)

differences. This is shown in Fig. 8 where we plot the gaseq = 3 on the left and the case
(p=3; g=4)ontheright. We see that the latter is stable, but the former develops very s
gradient very close to the leading edge that renders the computation eventually unst
This is documented more clearly in Fig. 9 where we plot the corresponding histories of
same quantities as before for the two computations.

If we simply increase both the interpolation order and the quadrature order so
p =g = 4 the method still diverges, which reinforces further the aforementioned finding
over-integration. It is also of interest to determine if the source of instability comes fr
the treatment of the advection terms or the diffusion terms. To this end, we performed
Euler simulations for the same problem: The first ongfer g = 3 and the second one with
p =3 andg =4. As initial conditions we used a Navier—Stokes solutiBe= 10,000) in
both cases, as it had more complex initial structure than a uniform state and thus instabi
were triggered earlier. We obtained an unstable computation in the former case but a <
one in the latter case as shown in Fig. 10 that plots the histories of the same correspo
modal boundary and interior contributions, as before.
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FIG.7. Time history of modal advection boundary (dot) and interior (solid) contributions of an element clc
to leading edge foRe= 1,000 andM =0.2. The simulation on the left was performed wjth= g = 3 and on the
right with p=3; q=4.
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FIG. 8. Density contours foRe=10,000 andM =0.2. The simulation on the left was performed with
p=q=23and on the right wittp=3; q =4.
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FIG.9. Time history of modal advection boundary (dot) and interior (solid) contributions of an element cl¢
to leading edge foRe= 10,000 andVl = 0.2. The simulation on the left was performed with=q =3 and on
the right withp=3; q=4.
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FIG. 10. Time history of advection boundary (dot) and interior (solid) contributions of an element close
leading edge for Euler simulations Bt = 0.2. The simulation on the left was performed wijth=q =3 and on
the right withp=3; q=4.
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4. CONVERGENCE AND SIMULATION RESULTS

In this section we demonstrate how the proposed discontinuous Galerkin ALE met
works in conjunction with the spectral basis that we employ for discretization. First, we
amine how distorted three-dimensional grids affect the spatial convergence of the me
we examine its temporal accuracy and also demonstrate the flexibility of hybrid discret
tion. Subsequently, we focus on the flow around a rapidly pitching airfoil for validati
against other established methods and on a three-dimensional computation of a fla
wing that simulates insect flight.

4.1. Convergence and Hybrid Discretization

4.1.1. Convergence for skewed elements.previous work we have demonstrated the
exponential convergence of the spectral discontinuous Galerkin method for the Euler
Navier—Stokes equations in two- and three-dimensional benchmark problems in static
domains [4, 39]. Here we demonstrate that the spectral discretization we employ |
to a robust method that does not suffer from appreciable numerical errors due to
deformation. This aspect is very important for the proposed method as high sensitivit
the solution on the grid would require frequdnrtefinement taxing flow simulations in
moving domains heavily.

To this end, we solve the parabolic equatigr= V2u for an analytical solution of the
form

. X . 7wy . mZ

ux, y,z t) = e 2sin == sin -2 sin —

(X, ¥,z 1) 6 6 6
with exact boundary conditions prescribed at all boundaries. The integration is for 10001
steps withAt = 107° to eliminate any temporal errors. We consider four different mesh

consisting of 12 tetrahedra as shown in Fig. 11. All tetrahedra share a common vertex
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FIG.11. L errorof a 3D parabolic problem as a function of the number of modes. Domain D has elem
with aspect ratio of 20. Exponential convergence is maintained even for very distorted elements.
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FIG. 12. Left, domain for the temporal accuracy tests. Ridht, error as a function of the time step for an
analytical solution of the unsteady Navier—Stokes equations obtained in the time-dependent domain shown ¢

center of the box, which we move as shown in Fig. 11 to cause distortion of the tetrahe
In the domain D elements with aspect ratio of 20 are obtained. The error plot of Fig
shows that there is a relatively small effect of distortion and that exponential converge
is maintained.

4.1.2. Temporal accuracy.In this example we use a square domain consisting of
triangles in order to test the time accuracy of the ALE code. Very high spectral or
(p between 13 and 18) was employed to eliminate the spatial discretization errors. We
an analytical solution as described below. The grid is time-dependent; it is changing a
move the central vertex along the path shown in Fig. 12. Specifically, the coordinates o
central vertex are

X, = Xo — cog207t)t°R; Y, = Yo — sin(207t)t®R,

whereR =50, and the final time of integrationtis= 0.2; here Ko, Yo) are the coordinates
of the initial position of the central vertex, which are (0, 0) as shown in Fig. 12.

On the left and right sides of the domain periodic boundary conditions are assumec
on the top and bottom Dirichlet boundary conditions are prescribed. The analytical solu
has the form

0 = A+ Bsin(wx) sin(10rt)

u = C + D cogwx) sin(wy) cog10rt)

T = E + Fysin(10rt),
wherew =8r, A=1,B=0.1,C=1, D=0.04, E =84, andF =28. The Navier-Stokes
equations are then integrated using a forcing term consistent with the above solution.
merical solutions were obtained for different sizes of time step, and the results are ¢

marized in Fig. 12 (right) for first-, second-, and third-order Adams—Bashforth integrati
Correspondingly, first-, second-, and third-order accuracy is achieved.

4.1.3. Hybrid discretization. To demonstrate the use of polymorphic domains, e.g., t
angular prisms, hexahedra, etc., we consider flow past a 3D wing formed from a NACAC
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TABLE |
Simulation Parameters for Compressible Flow
past a NACA0012 Wing with Endplates

Parameter Value
Dimension 3d
Re 2000 based on chord length
Mach 0.5
At le-4
P-range lto4
Number of prisms 1960
Number of hexahedra 2095
Method Discontinuous Galerkin

airfoil with plates attached to each end as a simple model of a wing between an engine
fusalage. We impose uniform upwind boundary conditions at inflow and outflow, and
domain is periodic from one end of the airfoil to the other. A thin layer of hexahedra v
used on the surface of the wing, and a combination of both hexahedra and prisms was
in the remainder of the computational domain. The simulation was run with up to or
p=4 atRe=2000 (based on chord length). A summary of the simulation parameter:
given in Table I. The hybrid discretization and some representative results are show
Fig. 13.

At low-order of interpolation, the simulation ran to steady state. This is due to a redu
effective Reynolds number achieved because of numerical dissipation. As we increase
p-order we observed unsteadiness developing in the wake of the wing, and what ap
to be oblique shedding. This is only a marginally three-dimensional domain but it d
demonstrate the flexibility of hybrid discretization to direct resolution into boundary lay:
and to fill out a domain with larger elements.

4.2. Flow around a Pitching Airfolil

We first validate the proposed method against established computational results
for a laminar flow around a rapidly pitching airfoil. In particular, we consider a NAC.
0015 airfoil pitching upwards about a fixed axis at a constant rate from zero incidenc
a maximum angle of attack of approximately 60 degrees. The pivot axis location/i4 at
of the chord measured from the leading edge. The temporal variation of the pitch give
[40]is

Q(t) = Qo1 — e *0] t>0,

wherety denotes the time elapsed for the airfoil to reach 99% of its final pitchratelere
the non-dimensional values age= 1.0 andQ2} = 0.6 based on the chord length and free
stream velocity. As initial condition the computed field at 0 degrees angle of attack is u
The Mach number i$1 = 0.2 and the chord Reynolds humbeiRe= 10,000.

In paper [40] a similar simulation was obtained using a grid fixed to the airfoil by emplc
ing an appropriate transformation and discretizing the modified compressible Navier—St
equations using the implicit approximate factorization of Beam and Warming [41]. A ty
ical grid used in [40] involved 203 101 points. Although accurate, this approach is nc
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FIG. 13. Hybrid mesh for flow past a three-dimensional NACA0012 wing with endplates (top and middl|
Iso-contours for x-component of momentum fdr= 0.5 (bottom).
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FIG. 14. Domain and triangulization for the simulation around the pitching airfoil NACA 0015.

general for moving domains and cannot be used, for example, in simulating multi-b
dynamics.

In the present study, we employ the ALE formulation on the domain shown in Fig. 14.
performed two different sets of simulations, first with unstructured discretization arot
the airfoil (see Fig. 15; total of 3,838 triangular elements), and subsequently with hyl
discretization with quadrilateral elements around the airfoil for better resolution of bounc
layers (total of 116 quadrilateral and 2167 triangular elements). We demonstrate hov
hybrid discretization combined withariablep-order per element allows accurate resolutio
of boundary elements without the need for remeshing. We first performed simulations:
constant p-order on all elements and subsequently with higher p-order in the inner Iz
of elements as shown in Fig. 16. We contrast the results in Fig. 17 for p-preed on
the left, andp varying from 10 in the innermost layer to 2 in the far field. We see that tl
boundary layer is unresolved as indicated by the discontinuities at the element interf
but it is accurately resolved in the second simulation.
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FIG. 15. Left, unstructured discretization consisting of triangles only. Right, hybrid discretizations consist
of triangles and quadrilaterals. All dimensions are in units of chord length.
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FIG. 16. Hybrid discretization showing the variable p-order on a gray-scale map around the airfoil. The ¢
vertical line indicates the location where boundary layer profiles are taken (see Fig. 17).

Returning now to the unstructured grid, we test convergence by also perfoqning
refinement on the same triangulization but with three different values of spectralmrde
corresponding to 2nd, 3rd, and 4th order polynomial interpolation. In Fig. 18 we plot
computed lift and drag coefficients versus the angle of attack for grids correspondin
p=2,3 and p=4. We also include (with symbols) the computational results of [40], al
we see that in general there is very good agreement except at the large angles of :
close to 50 degrees. This difference is due to qualitative difference in flow structure at s
scales, which are only resolved with the higher-order simulations.

The above results were obtained by prescribing the grid velddtgo that the entire
grid moves with the airfoil in a rigid body rotation. In this case, there is no grid distorti
as in the method in [40]. In order to examine the accuracy of the proposed metho
the presence of significant distortions we repeated the simulations with a grid velo
computed as described in Subsection 2.3. The results in this case were identical wit

015 0.15 |
: | |
044f ps 014 o5
013F 018
o12f 012
>0 1 :_ p=3 First Unstructured Triangle Layer >0 11 p=7 First Unstructured Triangle Layer
o1f ./ 0.1
009F -3 Second Sinctured Quadsilateral Layer 0.09F rp=10 Second Siructured Quadriairal Layer___ "
E e e e e e e e T D e e — . B = = T e
0.08 :— p=3 e it Stuctured Quadeitatenl Layer 0.08 p=10 /mhmnl Layer
eV N T SO S S B S c R S N S S S S W
0 05 1 0 0.5 1
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FIG. 17. Boundary layer profiles for a simulation with uniform p-resolution (left) and variable p-resolutic
(right, as shown in Fig. 16).
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FIG. 18. Lift (upper curve) and drag (lower curve) coefficients versus angle of attack in degrees. The sym
correspond to computations of [40], the dotted line corresponds to our simulatica 2tthe solid line top =3,
and the dashed line to=4.

results plotted in Fig. 18. However, above an angle of about 30 degrees there is an
crossing that produces negative Jacobian somewhere in the domain around the airfo
the computation cannot continue with the same grid so amesfinement is needed.

To examine differences in the flow field due to spatial resolution we plotin Fig. 19 den:
contours forthe cases= 2 and p = 3atnon-dimensionaltinte= 0.75 corresponding to an
angle of attack 18.55 degrees. We see that the higher resolution simulation provides a
detailed picture of the vortex shedding in the near-wake, but the contours around the a
are very similar. These results correspond to the ALE computation with the grid velo
computed as in Subsection 2.3 but comparison with the rigid body rotation simula
revealed identical results [39]. Similarly, at a later titre 1.5 corresponding to an angle of
attack of 44.1 degrees there are differences between the computations at regpitfion
and p = 3 and these differences are now extended to the upper surface of the airfoil w
an interaction between the trailing edge vortex and the upstream propagating shed v

FIG. 19. Density contours of the pitching airfoil at non-dimensional titee0.75 corresponding to 18.55
degrees angle of attack. Shown on the left are contours at spectralpsd2iand on the right ap = 3.
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FIG.20. Density contours ofthe pitching airfoil at non-dimensional timel.5 corresponding to 44.1 degrees
angle of attack. Shown on the left are contours at spectral gree2 and on the right ap = 3.

takes place, as shown in Fig. 20. These flow pattern differences are responsible fc
aforementioned differences in the lift and drag coefficient at large angle of attack as sh
in Fig. 18.

4.3. Flow around a 3D Flapping Wing

The next example demonstrates that the proposed discretization can sustain larg
distortions in three-dimensions without the needfaemeshing. We consider the flow pas
a three-dimensional wing formed by a prismatic NACA 4420 airfoil placed at 20 degr
angle of attack. Two-dimensional subsonic and supersonic simulations were present
[4] so here we will examine the effect of a prescribed flapping motion on the lift and d
forces. In particular, we consider the wing moving according to

u=_0; v=Acos2rft)H(z— 20)2(z — 20)/(L;/2); w =0,

wherez runs along the span of the airfoity = 2.5 is the reference point,, =5 is the
spanwise length of the airfoifh = 0.5 is the amplitude of the motion, arfds the frequency
with 27 f =1.57; alsoH (z) is the Heaviside function. The motion we simulate resembl
in some general way the flapping motion characteristic of insect flight [42].

Here we have performed simulations at chord Reynolds nurmRkeer680 and Mach
numberM =0.3. The discretization consists of 15,870 tetrahedrgef3 polynomial
order and the time step was tak&h= 0.00025. A typical “slice” of the discretized domain
around the airfoil is shown in Fig. 21. The origin of the reference frame is at the midpc
of the airfoil and the domain extends from= —2.5 at the inflow tox = 7.5 at the outflow
and fromy = —2.5toy= 2.5 at the sides. Here the non-dimensionalization is with respe
to the chord length@ = 2 in our computations) and the freestream velodity,(= 1.75 in
our computations).

In Fig. 22 we plot the drag and lift coefficients for two cycles of the flapping motio
Note that these coefficients are defined by dividing the corresponding force with the
of the wing (i.e.,L; x C). In the plot we present separately the forces due to pressure .
due to viscosity, and we see that the viscous forces contribute a non-negligible amou
the drag force unlike the lift force. In Fig. 23 we plot again the lift and drag coefficier
versus time, and we compare them with the corresponding coefficients from exactly



FIG.21. A*“slice” of the computational 3D domain around the airfoil; 15,870 tetrahedra are employed in
discretization.
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FIG.22. Drag (left) and lift (right) coefficients versus time for the 3D flapping wing. The dashed line deno
contribution from pressure forces, and the dotted line denotes contributions from viscous forces; the solid i
the total force.
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FIG. 23. Drag (left) and lift (right) coefficients versus time for the 3D flapping wing. The dotted line denot
force of the corresponding two-dimensional simulation and the solid line shows the simulation results of the
flapping wing.
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FIG. 24. Density contours from the 3D flapping wing simulation corresponding to tismé&5.5 (top left);
16.3 (top right); 17.5 (bottom left); 18.4 (bottom right). The simulation with flapping startee-410.36 from a
simulation with the stationary configuration and the flapping period is 4 in non-dimensional units.

same airfoil but in two-dimensional flow at the same angle of attack. The time variatio
due to natural vortex shedding in this case. It is interesting to note that instantaneous v
of the lift-over-drag ratio can be increased by about 25% compared to the time-aver:
valued, with the latter close to the value obtained from the corresponding two-dimensi
simulations.

Next we present a sequence of flow visualizations during one flapping cycle in Fig.
We use minima of density contours to capture the vortex tubes that are shed off the flag
wing. We see that there seems to be a clear lag between the motion of the flapping
and the visualized vortex tubes. The flapping motion essentially rearranges the vortex
resulting in a very different lift and drag force distribution. To examine qualitatively th
difference we plotin Fig. 25 instantaneous contours of density first from the two-dimensic
simulation (left) and also from the three-dimensional simulation at the mid-plane (rig
We see that in the former case a regular von Karman vortex street is formed, butin the |
an irregular secondary vortex street is developed downstream.

4.3.1. Computational cost.Finally, we conclude this section by commenting on th
computational cost of the simulations. Both the two-dimensional and the three-dimensi
simulations were run using an MPI-based parallel version of the method presented here
the partitioning based on a multi-level graph approach provided by the METIS softw
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FIG. 25. Instantaneous density contours comparing the structure of vortex street for the two-dimensi
simulation on the left and a mid-plane “slice” of the three-dimensional simulation on the right. For the thi
dimensional simulation the time instance is the same as the bottom left image in Fig. 24.

[43]. Specifically, the three-dimensional simulation was run for 33,000 time steps for at
of 50 CPU hours on 32 processors of the IBM SP2/P2SC system.

5. SUMMARY AND CONCLUSIONS

We have developed a new method for solving the compressible Navier—Stokes e
tions in moving computational domains using the arbitrary Lagrangian Eulerian (AL
formulation. Although high-order, this method employs standard unstructured and hy
grids consisting of arbitrary triangles and quadrilaterals in two dimensions, and tetrahe
hexahedra, prisms, and pyramids in three dimensions. The equations are solved in the
form using a discontinuous Galerkin approach both for the advective and diffusive con
nents. Unlike the standard Galerkin treatment [3], the new formulation relaxes contin
constraints across subdomains and thus allows the use of any convenient trial bas
particular, in the current work we employed an orthogonal tensor-product spectral bas
the non-orthogonal subdomains, as it results in high computational efficiency. Specific
the computational cost is, p?*! (whered =2 or 3 in 2D and 3D, respectively) wittn,
the number of elements amithe polynomial order in an element. This cost correspont
to differentiation and integration cost on the entire domain and is similar to the cost of s
operations in standard global methods in simple separable domains [44]. The only m
inversion required is that oflacal mass matrix, which is diagonal, and thus trivial to invert

As regards the grid movement, we have developed a new algorithm based on graph ti
and a modification of the barycenter version of the forced-directed method. This algori
avoids the solution of a computationally expensive Poisson equation for the grid velo
which is typically required in ALE formulations. Moreover, because the proposed metho
not particularly sensitive to grid distortions, incomplete convergence is sufficient to upc
the location of grid points.

We have demonstrated through examples, first thedastergencef the method in
distorted grids, and second thahe accuracyof third-order can be obtained in a straight
forward manner. We validated the method against published results for a pitching ai
using unstructured and hybrid grids and demonstrated the ability to verify the solu
without remeshing in physical space but rather refining hierachically in modal space.
also included a three-dimensional simulation of low subsonic flow past a three-dimensi
flapping wing in insect-like motion to demonstrate the flexibility and efficiency of tf
method. Our experience so far with the discontinuous Galerkin method is that it is a ro
method appropriate for high Reynolds number flow simulation; similar conclusions h
been reached independently by other groups [15, 45]. The method is element-wise co
vative and satisfies monotonicity without the need for flux limiters at subsonic, transonic
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supersonic speeds although in the latter case a “constant elemen®)(andh-refinement
around strong discontinuities is required. Several other recent supersonic simulations
moving domains and large deformations we have completed also point to the robustne
the discontinuous Galerkin ALE approach [39].

As regards the computational cost of the overall method, in our version of the met
(see also [15]) the use of auxiliary variables introduces three new variables for each ori
one in three-dimensions, unlike the variational approach proposed by €@dsn[18].
This is an important issue that we are currently investigating. Although more efficient,
difficulty with the Oderet al.formulation is that, as reported, constant elemepts Q) lead
to instabilities, and we need to have such elements in supersonic flows for shock capt
without flux limiters. A compromising solution will be to use the Odstral. formulation
and employ first-orderg= 1) elements in conjunction with some (relatively simple) flu;
limiters for shock capturing or other penalty-type terms [46]. The alternative approacl
using high-order limiters proposed in [11, 13], which we have also used in previous w
[4], is not as robust, and although it works for simple model problems it does not impr:
the quality of results in more realistic flow simulations.

The intended primary use of the proposed method isdf@ct numerical simulation
of compressible turbulent flow past flexible structures avoiding the currentlyadsédc
turbulence transport modeling [47], an erroneous approach for non-equilibrium turbule

APPENDIX |
Hierarchical Spectral Basis on Hybrid Domains

We include here for completeness the spectral basis we use as trial basis in the di
tinuous Galerkin formulation presented in this paper. This basis is suitable for trianc
guadrilaterals, tetrahedra, hexahedra, prisms, and pyramids. It is orthogonal, hierarc!
and it has a tensor product form if the appropriate coordinate system is used as shown &
This basis was developed by Sherwin in [6], and more details can be found in [29].

Local Coordinate Systems

We start by defining a convenient set of local coordinates upon which we can cons
the expansions. Moving away from the use of barycentric coordinates, which are typic
applied to unstructured domains, we define a setadfapsed Cartesiarroordinates in
non-rectangular domains. These coordinates will form the foundation of the polynor
expansions. The advantage of this system is that every domain can be bounded by
stant limits of the new local coordinates; accordingly operations such as integration
differentiation can be performed using standard one-dimensional techniques.

The new coordinate systems are based upon the transformation of a triangular re
to a rectangular domain (and vice versa) as shown in Fig. 26. The main effect of
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FIG. 26. Triangle to rectangle transformation.
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FIG. 27. Hexahedron to tetrahedron transformation.
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transformation is to map the vertical lines in the rectangular domain (i.e., lines of copgtan
onto lines radiating out of the poiriy(= —1, & = 1) inthe triangular domain. The triangular
region can now be described using the “ray” coordinat¢ &nd the standard horizontal
coordinate £ =1,). The triangular domain is therefore defined byl(< n1,n7, < 1)
rather than the Cartesian descriptionl( < &1, &; & + & < 0) where the upper bound
couples the two coordinates. The “ray” coordinatg (s multi-valued at§; = —1, &, =1).
Nevertheless, we note that the use of singular coordinate systems is very common al
in both cylindrical and spherical coordinate systems.

As illustrated in Fig. 27, the same transformation can be repeatedly applied to gene
new coordinate systems in three dimensions. Here, we start from the bi-unit hexahe
domain and apply the triangle to rectangle transformation in the vertical plane to gene
a prismatic region. The transformation is then used in the second vertical plane to gen
the pyramidic region. Finally, the rectangle to triangle transformation is applied to ev
square cross section parallel to the base of the pyramidic region to arrive at the tetrah
domain.

By determining the hexahedral coordinates (2, 13) in terms of the Cartesian coordi-
nates of the tetrahedral regiaon (&2, £3) we can generate a hew coordinate system for tt
tetrahedron. This new system and the planes described by fixing the local coordinate
shown in Fig. 28. Also shown are the new systems for the intermediate domains whict
generated in the same fashion. Here we have assumed that the local Cartesian coorc
for every domain areg(, &, &3).

Spectral Hierarchical Expansions

For each of the hybrid domains we can develop a polynomial expansion based
the local coordinate system derived in Section 5. These expansions will be polynon
in terms of the local coordinates as well as the Cartesian coordiriatés, €3). This is

& & & N= 2((11;;2))" &
m N b =
& &
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FIG. 28. The local coordinate systems used in each of the hybrid elements and the planes described by
each local coordinate.
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a significant property as primary operations such as integration and differentiation ca
performed with respect to the local coordinates but the expansion may still be consid
as a polynomial expansion in terms of the Cartesian system.

We shall initially consider expansions which are orthogonal in the Legendre inner pr
uct. We define three principle functiogg (z), ¢ibj (2, andqbicjk(z), in terms of the Jacobi
polynomial,Ps# (z), as

2@ =P°@. @)= (1;Z> p2+0(z),
_ i+
¢icjk(z) _ (122) Pk2'+21+2’0(z).

Using these functions we can construct the orthogonal polynomial expansions:

hexahedral expansion prismatic expansion
Bpar (61, 62, §3) = ¢5(E1)BG (E2)9f (63) bpar (1, €2, £3) = PB(EDPE(12) B8, (€3)
pyramidic expansion tetrahedral expansion

Ppar (61, €2, &3) = PR(MDPG(12)D5q,(13)  Ppar (1, €2, £3) = G311 Dpq(12)Phgr (13),
where

_20+6&)

_21+&) 21+ &)
mn - -1 =—=
(1-4&3)

(- &) (1-&)
are the local coordinates illustrated in Fig. 28.

The hexahedral expansion is simply a standard tensor product of Legendre polynot
(sincePg-O(z) = L p(2)). Inthe other expansions the introduction of the degenerate local
ordinate systems is linked to the use of the more unusual funqﬂpm andqbfjk (2). These
functions both contain factors of the forqfq;—z) P which is necessary to keep the expansio
as a polynomial of the Cartesian coordinatgs &>, £3). For example, the coordinaig
in the prismatic expansion necessitates the use of the furrﬁgmjgb) which introduces a
factor of ((1 — &3)/2)9. The product of this factor witbbg(nz) is a polynomial function in
& andé&s. Since the remaining part of the prismatic expansﬁiﬁ{gl), is already in terms
of a Cartesian coordinate the whole expansion is a polynomial in terms of the Carte

, n= , n2 1 n3 = &3,

system.
The polynomial space, in Cartesian coordinates, for each expansion is
P =Spar{sf & &}, (11)
wherepqr for each domain is
Hexahedron Kp=<P 0<q=<h 0<r <Ps
Prism O<p=<hP 0=<q=<Ph 0<g+r =<Ph; (12)
Pyramidic O<p=<P. 0<g=P O<p+q+r=<Ps

Tetrahedron p<P, 0<p+q=<P, O0<p+q+r < Ps.

The range of thep, g, andr indices indicates how the expansions should be expandec
generate a complete polynomial space. We note ttiatsf P, = P; then the tetrahedral and
pyramidic expansions span the same space and are in a subspace of the prismatic exr
which is in turn a subspace of the hexahedral expansion.
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An important property of the hybrid spectral basis is that it is orthogonal in the n
coordinate system that we introduce. This simplifies greatly the discontinuous Gale
formulation, since all mass matrices are diagonal and their inversion is trivial.

APPENDIX Il

Numerical Quadrature and Flux Computation

Here we provide some details on how the numerical quadrature is performed on poly
phic elements, elaborating on what has already been presented in Section 3. Specifi
we examine how the flux terms involved in the discontinuous Galerkin formulation :
computed. To this end, we take advantage of the tensor product in the transformed ¢
(n1, 2, n3) to perform integration. The integrations over each element can be perforr
as a set of one-dimensional integrals using variants of Gauss quadrature. If we use
reference coordinate systems this would be very difficult since the limits of the “collaps
elements are not constant.

We first describe the choice of quadrature type for integrating each direction. We
then motivate the inclusion of quadrature with non-constant weights in order to reduce
number of points we use. For example, in two dimensions we consider integrals of the f

/ () dx dy= focen 2% e, de
Physical

Reference il (5)

_ 9(X)a(§)
—/Tensorf( (&M )))8(5)8( ) dn dnp.

We use the Gauss weights that will perform the discrete integral of a function as a sur

N-1
/(1 z)“(1+z)/’f(z)dz—2f (Y w’.

This will be used in each of the directions in thed-dimensional elements. In Table Il we
show the type of Gaussian quadrature we use in each @f g &; directions.
For the Discontinuous Galerkin formulation it is necessary to evaluate terms of the f

/ f¢n+/ F o,
oQ Q

TABLE I

Element M1 M2 73
Triangle GLL GRJo —
Quadrilateral GLL GLL —
Tetrahedron GLL GR3, GR3o
Pyramid GLL GLL GRJY,
Prism GLL GLL GRJ,
Hexahedron GLL GLL GLL

Note. GLLimplies Gauss—Lobatto—-Legendre which is the Gauss
guadrature for a constant weight function with batk= +1 points
endpointsincludedGRJ, s implies Gauss—Radaus—-Jacobi quadrature
with (o, 8) weights and one of the endpoints included.
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whered is the boundary of an elemef, for all the ¢, test functions in the elemental
basis. There ar8l % test functions for a triangle so the boundary integral i<l )
operation. This means that the flux integration is as expensive as the volume integral
can reduce the cost of this integral by examining the discrete sum form

N N
[0 =3 00050 T 00w 3 00 Y (L ) £ 22 02)
9% i=0

i=0

N
+ Z on(—1, n2) F3(n2)w?I3(m2),

i=0

whereJ" and f" are the Jacobian and flux function for thih edge.
We can rewrite thedge flux as

N N 1,
fon = Z Z L) fe(01)8j08n (i, m2j)witw?,
edgg wg ! Ea B

j=0 i=0
where

5 — 0 ifi # j
R | ifi =j.

The fluxes for the other edges can be constructed in similar ways. Using this summ:
representation we can now evaluate the surface flux integral by adding the edge fluxes s
by weight and Jacobians to tikefield and then evaluating one volume integral.
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